AI Transparency on FHIR, published by HL7 International / Electronic Health Records. This guide is not an authorized publication; it is the continuous build for version 0.1.0 built by the FHIR (HL7® FHIR® Standard) CI Build. This version is based on the current content of https://github.com/HL7/aitransparency-ig/ and changes regularly. See the Directory of published versions
<Provenance xmlns="http://hl7.org/fhir">
<id value="AI-generated-patient-resource"/>
<text>
<status value="generated"/>
<div xmlns="http://www.w3.org/1999/xhtml"><p class="res-header-id"><b>Generated Narrative: Provenance AI-generated-patient-resource</b></p><a name="AI-generated-patient-resource"> </a><a name="hcAI-generated-patient-resource"> </a><p>Provenance for <a href="Patient-a1b2c3d4-e5f6-7890-abcd-ef1234567890.html">Jane Doe (official) Female, DoB: 1950-11-15 ( Medical Record Number: MRN123456789 (use: usual, ))</a></p><p>Summary</p><table class="grid"><tr><td>Occurrence</td><td>2025-06-18 00:00:00+0000</td></tr><tr><td>Recorded</td><td>2025-06-18 00:00:00+0000</td></tr><tr><td>Policy</td><td><a href="http://example.org/policies/ai-authorized-patient-generation">http://example.org/policies/ai-authorized-patient-generation</a></td></tr></table><p><b>Agents</b></p><table class="grid"><tr><td><b>Type</b></td><td><b>who</b></td></tr><tr><td><span title="Codes:{http://terminology.hl7.org/CodeSystem/provenance-participant-type verifier}">Verifier</span></td><td><a href="http://example.org/fhir/Practitioner/pract">http://example.org/fhir/Practitioner/pract</a></td></tr><tr><td><span title="Codes:{http://terminology.hl7.org/CodeSystem/provenance-participant-type author}">Author</span></td><td><a href="Device-Note-ModelCard.html">Device: identifier = http://example.org/ehr/client-ids#goodhealth; manufacturer = Acme Devices, Inc; type = ; contact = http://example.org; note = ---
language:
- en
license:
- bsd-3-clause
annotations_creators:
- crowdsourced
- expert-generated
language_creators:
- found
multilinguality:
- monolingual
size_categories:
- n<1K
task_categories:
- image-segmentation
task_ids:
- semantic-segmentation
pretty_name: Sample Segmentation
---
# Dataset Card for Sample Segmentation
This is a sample dataset card for a semantic segmentation dataset.</a></td></tr></table></div>
</text>
<contained>
<DocumentReference>
<id value="Input-Prompt-create-patient"/>
<status value="current"/>
<type>
<coding>
<system
value="http://hl7.org/fhir/uv/aitransparency/CodeSystem/AImodelCardCS"/>
<code value="AIInputPrompt"/>
<display value="AI Input Prompt"/>
</coding>
</type>
<category>
<coding>
<system
value="http://hl7.org/fhir/uv/aitransparency/CodeSystem/AImodelCardCS"/>
<code value="AIInputPrompt"/>
<display value="AI Input Prompt"/>
</coding>
</category>
<description
value="System Prompt
You are a healthcare data specialist that converts natural language patient information into valid FHIR Patient resources. Your task is to extract relevant patient demographics and create a well-formed FHIR Patient resource that is fully conformant with FHIR US Core 6.1.0 specifications.
Requirements:
- Generate valid JSON that conforms to FHIR R4 Patient resource structure
- Ensure compliance with US Core Patient Profile (US Core 6.1.0)
- Include all required US Core elements when data is available
- Use appropriate FHIR data types and value sets
- Generate a unique resource ID using UUID format
- Apply proper FHIR coding systems and terminologies
- Handle missing data appropriately (omit optional fields when data unavailable)
- Use standard US address formatting
- Apply proper date formatting (YYYY-MM-DD)
- Include appropriate extensions when necessary for US Core compliance
US Core 6.1.0 Patient Profile Requirements:
- Must include: identifier, name, gender, birthDate
- Should include: address, telecom, race, ethnicity when available
- Use US Core extensions for race and ethnicity
- Follow US postal address conventions
- Use appropriate terminologies (e.g., HL7 AdministrativeGender, OMB race categories)
Data Mapping Guidelines:
- Extract patient name and structure as HumanName with family/given components
- Map gender terms to FHIR AdministrativeGender codes (male, female, other, unknown)
- Convert birth dates to FHIR date format
- Structure addresses using Address data type with appropriate use codes
- Map race/ethnicity information using US Core extensions with appropriate OMB codes
- Generate medical record number as primary identifier when not provided
- Include meta.profile reference to US Core Patient profile
Output Format:
- Provide only the valid FHIR JSON resource without additional commentary or explanation.
User Prompt
- Convert the following patient information into a FHIR Patient resource conformant with US Core 6.1.0:
`Jane Doe is a white female born on November 15, 1950. She lives at 123 Main Street, Anytown, Michigan, zipcode 12345.`"/>
<content>
<attachment>
<contentType value="text/plain"/>
<data
value="R2VuZXJhdGUgYSBsb3JlbSBpcHN1bSB0ZXh0IHRvIHNlcnZlIGFzIHBsYWNlaG9sZGVyIGNvcHkgZm9yIHVzZSBpbiBkZXNpZ24sIGRldmVsb3BtZW50LCBhbmQgcHVibGlzaGluZy4gCgoxLiBTcGVjaWZ5IHRoZSBleGFjdCBhbW91bnQgb2YgdGV4dCBvciB0aGUgbnVtYmVyIG9mIHBhcmFncmFwaHMgcmVxdWlyZWQgKGUuZy4sIDEgcGFyYWdyYXBoLCAzIHBhcmFncmFwaHMsIGV0Yy4pLiAKMi4gQ3JlYXRlIHRoZSBsb3JlbSBpcHN1bSB0ZXh0IHVzaW5nIGEgY2xhc3NpYyBzdHlsZSBvciBpbnRyb2R1Y2Ugc2xpZ2h0IHZhcmlhdGlvbnMgd2hpbGUga2VlcGluZyB0aGUgbm9uc2Vuc2ljYWwgbmF0dXJlIHRvIHN1aXQgdGhlIHJlcXVlc3RlZCBsZW5ndGguIAoKRW5zdXJlIHRoYXQgdGhlIHRleHQgbWFpbnRhaW5zIGEgZ29vZCBiYWxhbmNlIGJldHdlZW4gcmVhZGFiaWxpdHkgYW5kIHRoZSB0cmFkaXRpb25hbCBsb3JlbSBpcHN1bSBzdHlsZSwgZ2l2aW5nIGEgcmVhbGlzdGljIGltcHJlc3Npb24gb2YgaG93IHRoZSB0ZXh0IHdpbGwgaW1wYWN0IHRoZSBvdmVyYWxsIGxheW91dCBhbmQgZGVzaWduLgoKIyBPdXRwdXQgRm9ybWF0Ci0gUHJvdmlkZSBhIGNvbnRpbnVvdXMgYmxvY2sgb2YgbG9yZW0gaXBzdW0gdGV4dCBjb3JyZXNwb25kaW5nIHRvIHRoZSBzcGVjaWZpZWQgYW1vdW50IG5lZWRlZC4="/>
</attachment>
</content>
</DocumentReference>
</contained>
<target>🔗
<reference value="Patient/a1b2c3d4-e5f6-7890-abcd-ef1234567890"/>
</target>
<occurredDateTime value="2025-06-18T00:00:00Z"/>
<recorded value="2025-06-18T00:00:00Z"/>
<policy
value="http://example.org/policies/ai-authorized-patient-generation"/>
<reason>
<coding>
<system value="http://terminology.hl7.org/CodeSystem/v3-ActReason"/>
<code value="HOPERAT"/>
</coding>
</reason>
<agent>
<type>
<coding>
<system
value="http://terminology.hl7.org/CodeSystem/provenance-participant-type"/>
<code value="verifier"/>
<display value="Verifier"/>
</coding>
</type>
<who>
<reference value="http://example.org/fhir/Practitioner/pract"/>
</who>
</agent>
<agent>
<type>
<coding>
<system
value="http://terminology.hl7.org/CodeSystem/provenance-participant-type"/>
<code value="author"/>
<display value="Author"/>
</coding>
</type>
<who>🔗
<reference value="Device/Note-ModelCard"/>
</who>
</agent>
<entity>
<role value="quotation"/>
<what>
<reference value="#Input-Prompt-create-patient"/>
</what>
<agent>
<type>
<coding>
<system
value="http://terminology.hl7.org/CodeSystem/provenance-participant-type"/>
<code value="author"/>
<display value="Author"/>
</coding>
</type>
<who>
<reference value="http://example.org/fhir/Practitioner/pract"/>
</who>
</agent>
</entity>
</Provenance>