
8/29/2021 UDAP JWT-based Client Authentication<

https://www.udap.org/udap-jwt-client-auth.html 2/7

U D A P J W T - B A S E D C L I E N T A U T H E N T I C A T I O N
DRAFT 2018-08-14

Many organizations have established digital identities that
can be reused within a trust community to
facilitate cross-organizational
queries. UDAP JWT-based client authentication leverages existing public key
infrastructure and validated identities to help scale such queries.

UDAP implements JWT-based client authentication as an
extension to the OAuth 2.0 authorization
framework defined in RFC 6749, based in
part on the profiles defined in RFC 7521 and RFC 7523 for
assertion-based
authentication. To request use of this extension, a Client App constructs and
digitally signs
a JSON Web Token (JWT) that is used by the Client App as an
Authentication Token (AnT), then includes this
token as a client assertion to
authenticate itself to the Authorization Server’s token endpoint in its request
for an access token. This client authentication protocol can be used with any
OAuth 2.0 grant mechanism
where a Client App authenticates to the Authorization
Server token endpoint in order to obtain an access
token, including authorization
code flow, client credentials flow, or other extension grant flows utilizing
the
token endpoint.

Before granting an access token, the Authorization Server uses
standard Public Key Infrastructure tools to
validate the digital signature on
the AnT submitted by the Client App, and to evaluate the trust chain for the
Client App’s X.509 certificate. The access token is granted by the
Authentication Server only if the AnT is
valid (see Section 6) and the Client
App’s certificate is trusted. This protocol SHALL only be used only by
Client
Apps that are able to protect the private key used to sign AnTs, e.g.
confidential clients and certain
native device apps.

Note: The HTTP request and response examples presented below
are non-normative. For readability
purposes, line wraps have been added
to some HTTP headers and request bodies, some headers have been
omitted, and
some parameters have not been URL encoded.

The following steps define the workflow:

1. The Client App checks that the Authorization Server
supports UDAP by retrieving the Authorization
Server’s UDAP metadata from a
well-known URL.

GET /.well-known/udap HTTP/1.1

Host: resourceholder.example.com

Response:

HTTP/1.1 200 OK

Content-Type: application/json

{

 "x5c" : ["{cert1}", "{cert2}", …]

}

If the Authorization Server returns an error code, then the Authorization
Server does not support UDAP
JWT-based client authentication and the Client App
should abort this workflow. The Authorization Server’s
certificates are
discovered as part of this metadata request. The Client App MAY examine the
certificates to
determine whether the Authorization Server is part of a suitable
trust community.

2. The Client App MUST register with the Authorization
Server to use signed JWTs as Authentication Tokens,
unless the Client App and
Authorization Server support the alternative flow for unregistered client apps
described in section 8.1. If the Authorization Server supports UDAP Dynamic
Client Registration, the Client
App MAY register with the AS using that
protocol. If the AS does not support dynamic client registration, it
SHOULD
supply another method for Client Apps to register their certificates and obtain
a client ID.

3. The Client App SHOULD perform any steps required by the
grant mechanism it is using before making its
request to the token endpoint. These
steps occur prior to client authentication.

3.1 Authorization Code Flow

When using the authorization code flow, the Client App
should first direct the end user to the AS’s
authorization endpoint in order to
receive an authorization code via the Client App’s redirection endpoint,
as in
this example:

GET /authorize?

 response_type=code&

state client random state&

8/29/2021 UDAP JWT-based Client Authentication<

https://www.udap.org/udap-jwt-client-auth.html 3/7

_
 scope= resource_scope1+resource_scope2&

 redirect_uri=https://client.example.net/clientredirect HTTP/1.1

Host: resourceholder.example.com

If the end user authorizes the Client App to the requested
resources, the AS will return an authorization
code to the Client App by
redirecting the user’s browser to the Client App’s redirection endpoint:

HTTP/1.1 302 Found

Location: https:// client.example.net/clientredirect?

 code=authz_code_from_resource_holder&

 state=client_random_state

3.2 Client Credentials Flow

When using the client credentials flow, no additional steps
are required prior to connecting to the token
endpoint.

3.3 For other grant types, perform the steps required by
that grant type, if any, prior to connecting to the
token endpoint.

4. The Client App then prepares an Authentication Token
(AnT) for inclusion in the Client App’s request to
the AS’s token endpoint. The
AnT serves two purposes: it establishes the Client’s control of a private key,
and it provides the digital certificate needed to validate the signature and
establish trust. The AnT is a
signed JWT containing the following claims:

 iss: unique identifying URI of the Client Token Service

 sub: the client ID issued by the AS to the Client App

 aud: token endpoint URI of the Authorization Server

 exp: token expiration time expressed as seconds since epoch (should be
short-lived)

 iat: issued at time expressed as seconds since epoch

 jti: token identifier used to identify token replay

The JOSE Header for the AnT contains the following key/value
pairs:

 alg : "RS256"

 x5c : [cert1, cert2, …]

 x5u : valid URI (optional)

The x5c claim contains the Client App’s certificate chain as
an array of one or more elements, each
containing a base64 encoded
representation of the DER encoded X.509 certificate. The AnT is digitally
signed and assembled using JWS compact serialization as per RFC 7515.

5. The client uses this AnT to authenticate itself as part
of its request for an access token from the
Authorization Server’s token
endpoint. The client indicates that an AnT will be used by including two
extension parameters: “client_assertion_type” with a value of
“urn:ietf:params:oauth:client-assertion-
type:jwt-bearer” and “client_assertion”
with a value equal to the JWS compact serialization of the signed
AnT
constructed in step 4. An additional extension parameter “udap” is also
included with a string value of
“1” to signal to the AS that version 1 of this
protocol is being used. The Client App MUST NOT use HTTP
Basic authentication,
i.e. an Authorization header MUST NOT appear in the request headers, as no
shared
client secret is used in this workflow. The client ID MAY be included in
the request parameter; if included, it
must match the sub value in the AnT.

5.1 Authorization Code Flow

Continuing the previous example using the authorization code
flow, the Client App submits the
authorization code obtained following user
authorization:

POST /token HTTP/1.1

Host: as.example.com

Content-type: application/x-www-form-urlencoded

grant_type=authorization_code&

 code=authz_code_from_resource_holder&

 client_assertion_type=urn:ietf:params:oauth:client-assertion-type:jwt-bearer&

 client_assertion=eyJh[…remainder of AnT omitted for brevity…]&

 udap=1

5.2 Client Credentials Flow

8/29/2021 UDAP JWT-based Client Authentication<

https://www.udap.org/udap-jwt-client-auth.html 4/7

POST /token HTTP/1.1

Host: as.example.com

Content-type: application/x-www-form-urlencoded

grant_type=client_credentials&

client_assertion_type=urn:ietf:params:oauth:client-assertion-type:jwt-bearer&

 client_assertion=eyJh[…remainder of AnT omitted for brevity…]&

 udap=1

6. Authorization Server (AS) validates the Client App’s request.

6.1 The AS validates the digital signature on the AnT using
the public key extracted from cert1 in the x5c
parameter of the JOSE header. If
the signature cannot be validated, the request is denied.

6.2 The AS attempts to construct a valid certificate chain
from the Client’s certificate (cert1) to an anchor
certificate trusted by the
AS using conventional X.509 chain building techniques and path validation,
including certificate validity and revocation status checking. The Client MUST
include its own certificate and
MAY include a complete certificate chain in its
request. The AS MAY use additional certificates not included
by the Client to
construct a chain (e.g. from its own certificate cache or discovered via the
X.509 AIA
mechanism). If a trusted chain cannot be built and validated by the AS,
the request is denied.

6.3 The AS validates the sub, aud, exp, iat, and jti values
within the AnT. The sub value MUST correspond to
a registered client ID that is
permitted to authenticate using an AnT. If the request contains a client_id
parameter, the client_id value MUST match the sub value. The aud value MUST
contain the AS’s base URL,
and the AnT MUST be unexpired. A maximum AnT
lifetime of 5 minutes is RECOMMENDED. The AS MAY
deny a request if the same AnT
(as determined by the jti value) has been used in a previous token request.

6.4 The AS validates any other parameters in the request as
per the requirements of the grant mechanism
identified by the grant_type value.
If a parameter is invalid or a required parameter is missing, the request
is
denied.

6.5 The AS MAY apply additional authorization constraints
based on certificate attributes as a matter of
local policy.

7. Authorization Server responds to request

7.1 If the request is approved, the Authorization Server
returns a token response as per Section 5.1 of RFC
6749. For example:

HTTP/1.1 200 OK

Content-Type: application/json

{

 "access_token": "example_access_token_issued_by_AS",

 "token_type": "Bearer",

 "expires_in": 3600

}

The AS MAY also return a refresh_token in its response.

7.2 If the request is denied, the AS returns an error as per
Section 5.2 of RFC 6749. Denials related to trust
validation SHOULD use the “invalid_client”
code. Denials related to invalid signatures should use the
“invalid_request”
code. The AS MAY include an error_description parameter. For example:

HTTP/1.1 400 Bad Request

Content-Type: application/json

{

 "error": "invalid_client",

 "error_description": "The submitted authentication token has
expired"

}

8 Client Authentication without Pre-registration

8.1 When the identity and privileges of a Client App can be
fully determined by an Authorization Server
based solely on the attributes listed
in the client certificate included in the Authentication Token, the
Authorization Server MAY allow an unregistered Client App to use this
authentication protocol to obtain an
access token using the client_credentials
grant flow. In this case, as no client_id exists for the unregistered
Client
App, the corresponding trust community MUST define the set of certificate
attributes that an AS can
use to uniquely identify a Client App, and specify a
reserved value for the sub claim (e.g. “unregistered”)

8/29/2021 UDAP JWT-based Client Authentication<

https://www.udap.org/udap-jwt-client-auth.html 5/7

that can be included in
the AnT to signal to the AS that the subject of the AnT is the unregistered
Client App
identified by the included certificate. This specification does not
restrict how the Authorization Server
and/or Resource Server communicate to the
Client App that this alternate workflow can be used.

Note that this approach is not suitable for applications
utilizing the authorization code flow as there is no
mechanism to preregister
the Client App’s redirection URI; such unregistered clients SHOULD use the UDAP
Dynamic Client Registration Protocol instead.

9 References

Campbell, C., et al. “Assertion Framework for OAuth 2.0
Client Authentication and Authorization Grants”,
RFC 7521, RFC Editor, May
2015.

Cooper, D., et al. “Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL)
Profile”, RFC 5280, RFC Editor, May 2008.

Hardt, D., Ed., “The OAuth 2.0 Authorization Framework”, RFC 6749, RFC Editor, October
2012.

Jones, M., et al. “JSON Web Signature (JWS)”, RFC 7515, RFC Editor, May 2015.

Jones, M., et al. “JSON Web Token (JWT)”, RFC 7519, RFC Editor, May 2015.

Jones, M., et al. “JSON Web Token (JWT) Profile for OAuth 2.0 Client
Authentication and Authorization
Grants”, RFC 7523, RFC Editor, May 2015.

Sakimura, N, et al. “OpenID Connect Core 1.0 incorporating errata set 1”, The
OpenID Foundation,
November 2014.

10 Authors

Luis C. Maas III, EMR Direct

Julie W. Maas, EMR Direct

11 Notices

Copyright ©2016-2018 UDAP.org and the persons identified as
the document authors. All rights reserved.

UDAP.org grants to any interested party a non-exclusive,
royalty-free, worldwide right and license to
reproduce, publish, distribute and
display this Draft Specification, in full and without modification, solely
for
the purpose of implementing the technology described in this Draft
Specification, provided that
attribution is made to UDAP.org as the source of
the material and that such attribution does not indicate an
endorsement by
UDAP.org.

All Draft Specifications and Final Specifications, and the
information contained therein, are provided on an
“AS IS” basis and the
authors, the organizations they represent, and UDAP.org make no (and hereby
expressly disclaim any) warranties, express, implied, or otherwise, including
but not limited to any warranty
that the use of the information therein will
not infringe any rights or any implied warranties of
merchantability or fitness
for a particular purpose, and the entire risk as to implementing this
specification
is assumed by the implementer. Additionally, UDAP.org takes no
position regarding the validity or scope of
any intellectual property or other
rights that might be claimed to pertain to the implementation or use of
the
technology described in this document or the extent to which any license under
such rights might or
might not be available, nor does it represent that it has
made any independent effort to identify any such
rights.

8/29/2021 UDAP JWT-based Client Authentication<

https://www.udap.org/udap-jwt-client-auth.html 6/7

A B O U T U D A P

The Unified Data Access Profiles (UDAP) published
by UDAP.org increase confidence in open API
transactions through the use of trusted identities
and verified attributes. Interest in UDAP led to
the
development of additional implementation
guides focused on key use cases in the deployment
of reusable
identities, including Dynamic Client
Registration and Tiered OAuth. The profiles can be
used to help scale the
secure use of open APIs, while
also protecting the personal information of network
participants.

C H E C K I N . . .

 Email collaborate@udap.org for more information or

Join our Google Group (https://groups.google.com/forum/#!forum/udap-discuss/join)

to participate in the development of UDAP.

G E T T I N G I N V O LV E D

UDAP profiles have been tested at several HL7 FHIR connectathons. Contact
us for more information about
how to become involved in testing or to pilot one or more profiles within your own ecosystem.

Interoperability Engine (http://www.interopengine.com) OAuth and FHIR services support UDAP.

HealthToGo (https://www.healthtogo.me) FHIR Client services
support UDAP.

FHIR is a registered trademark of Health Level Seven International and is used with the permission of HL7.

U D A P S P O N S O R S

https://groups.google.com/forum/#!forum/udap-discuss/join
http://www.interopengine.com/
https://www.healthtogo.me/

8/29/2021 UDAP JWT-based Client Authentication<

https://www.udap.org/udap-jwt-client-auth.html 7/7

© 2021 UDAP.org
 (https://www.twitter.com/udapTools)

Privacy Policy (http://www.emrdirect.com/privacy.html) | Terms of Use (http://www.emrdirect.com/terms.html)

The development of these profiles is currently sponsored by EMR Direct.
Visit the EMR Direct
(http://www.emrdirect.com) corporate site for more information on integrating interoperability services into
software applications, or for activating production Direct Messaging or HL7 FHIR services.

https://www.twitter.com/udapTools
http://www.emrdirect.com/privacy.html
http://www.emrdirect.com/terms.html
http://www.emrdirect.com/

